DESIGN OF HEATING, VENTILATION AND AIR CONDITIONING INSTALLATIONS

TEMPEX Ltd. has an experienced and motivated team of HVAC designers located in Plovdiv and Sofia.

You need a HVAC design for:

  • Business building
  • Hotel
  • Hospital
  • Restaurant
  • Production plant
  • School / Day care
  • Store
  • Condominium
  • Family house
  • Apartment

Let us do it for you!

With TEMPEX, investors find the most effective solution for their needs. A good project can save you a large part of the initial investment and subsequent operating costs.

When designing, we rely on modern energy-efficient and ecological facilities and installations. In this way, we achieve optimal results for our clients, which makes them more competitive in their field.

We specialize in:
VRF installationsAir conditioning of productions
Heat pump systemsGeneral exchange and local ventilation
Chiller systemsProduction technology lines
Floor heatingHeating installations with boilers
Installations with climate chambersSmoke exhaust
Supply and suction installations with recuperatorsDemister installations for swimming pools
General exchange and local ventilation

RICH EXPERIENCE

We, the designers from TEMPEX, have many years of experience in the HVAC field. We will understand and respond to every single specificity related to your project. Your project will be carried out professionally, it will comply with the current regulations and modern world trends in the field of air conditioning.

All these years we have designed different types of installations. A large part of the designed sites are implemented by our company. We enrich our experience in the implementation, operation and maintenance of the installations.

OUR LATEST PROJECTS

Energy Efficiency Design

Energy Efficiency is a mandatory part of the project documentation of any new object or reconstruction, renovation, major repair, remodeling, upgrade and extension of existing residential and non-residential buildings.

Our design team also offers this service to our investors and clients. With the Energy Efficiency calculations, we determine the necessary thermal insulation of the external enclosing structures of the building, the need to lay insulation on internal walls, floors and ceilings between heated and unheated rooms. We make details for every wall, floor and roof.

Fence details - external walls

1. Wienerberger bricks 25cm + EPS 10cm

Тухли Винербергер 25см + EPS 10см
  1. Mineral plaster c δ=15 mm; λ=0.7 W/m°C
  2. EPS- expanded polystyrene c δ=100 mm; λ=0.032 W/m°C
  3. Masonry from Wienerberger bricks 250mm c δ=250 mm; λ=0.26 W/m°C
  4. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,015/0,700 + 0,100/0,032 + 0,250/0,260 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 4,3057 [m² °C/W] → U = 0,2322 [W/m² °C]

2. Reinforced concrete 25 cm + EPS 10 cm

Стоманобетон 25см + ЕPS 10 см
  1. Mineral plaster c δ=15 mm; λ=0.7 W/m°C
  2. EPS- expanded polystyrene c δ=100 mm; λ=0.032 W/m°C
  3. Reinforced concrete c δ=250 mm; λ=1.63 W/m°C
  4. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,015/0,700 + 0,100/0,032 + 0,250/1,630 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 3,4976 [m² °C/W] → U = 0,2859 [W/m² °C]

2. Wienerberger bricks 25cm + EPS 10cm + cam. lining

Тухли Винербергер 25см + EPS 10см + кам. облицовка
  1. Facing stone c δ=30 mm; λ=1.16 W/m°C
  2. Glue c δ=10 mm; λ=0.7 W/m°C
  3. EPS- expanded polystyrene c δ=100 mm; λ=0.032 W/m°C
  4. Masonry from Wienerberger bricks 250mm c δ=250 mm; λ=0.26 W/m°C
  5. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,030/1,160 + 0,010/0,700 + 0,100/0,032 + 0,250/0,260 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 4,3245 [m² °C/W] → U = 0,2312 [W/m² °C]

4. Reinforced concrete 25 cm + EPS 10 cm with stone lining

Стоманобетон 25см + EPS 10см с каменна облицовка
  1. Facing stone c δ=30 mm; λ=1.16 W/m°C
  2. Glue c δ=10 mm; λ=0.7 W/m°C
  3. EPS- expanded polystyrene c δ=100 mm; λ=0.032 W/m°C
  4. Reinforced concrete c δ=250 mm; λ=1.63 W/m°C
  5. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,030/1,160 + 0,010/0,700 + 0,100/0,032 + 0,250/1,630 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 3,5163 [m² °C/W] → U = 0,2844 [W/m² °C]

5. Ventilated facade Etalbond + 10 cm cam. cotton wool + Wienerberger bricks 25 cm

Вентилируема фасада Еталбонд + 10см кам. вата + тухли Винербергер 25см
  1. Etalbond c δ=4 mm; λ=0.29 W/m°C
  2. Air layer c δ=10 mm; R=0.15 m² °C/W
  3. Vapor insulation c δ=1 mm; λ=0.17 W/m°C
  4. Stone wool c δ=100 mm; λ=0.035 W/m°C
  5. Masonry from Wienerberger bricks 250mm c δ=250 mm; λ=0.26 W/m°C
  6. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,004/0,290 + 0,150 + 0,001/0,170 + 0,100/0,035 + 0,250/0,260 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 4,1861 [m² °C/W] → U = 0,2389 [W/m² °C]

6. Ventilated facade Etalbond + 10 cm stone wool + reinforced concrete 25 cm

Вентилируема фасада Еталбонд + 10см кам.вата + стоманобетон 25см
  1. Etalbond c δ=4 mm; λ=0.29 W/m°C
  2. Air layer c δ=10 mm; R=0.15 m² °C/W
  3. Vapor insulation c δ=1 mm; λ=0.17 W/m°C
  4. Stone wool c δ=100 mm; λ=0.035 W/m°C
  5. Reinforced concrete c δ=250 mm; λ=1.63 W/m°C
  6. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,040 + 0,004/0,290 + 0,150 + 0,001/0,170 + 0,100/0,035 + 0,250/1,630 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 3,378 [m² °C/W] → U = 0,296 [W/m² °C]

Fence details - internal walls

7. Тухли Винербергер 25см

Тухли Винербергер 25см
  1. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C
  2. Masonry from Wienerberger bricks 250mm c δ=250 mm; λ=0.26 W/m°C
  3. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,130 + 0,015/0,540 + 0,250/0,260 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 1,2771 [m² °C/W] → U = 0,783 [W/m² °C]

8. Тухли Винербергер 12см

Тухли Винербергер 12см
  1. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C
  2. Masonry from Wienerberger bricks 120mm c δ=120 mm; λ=0.34 W/m°C
  3. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,130 + 0,015/0,540 + 0,120/0,340 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 0,6685 [m² °C/W] → U = 1,4959 [W/m² °C]

9. Стоманобетон 25 см

Стоманобетон 25 см
  1. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C
  2. Reinforced concrete c δ=250 mm; λ=1.63 W/m°C
  3. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,130 + 0,015/0,540 + 0,250/1,630 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 0,4689 [m² °C/W] → U = 2,1325 [W/m² °C]

10. Kalkan bricks Wienerberger 25cm + EPS 3cm + reinforced concrete 25cm

Калкан тухли Винербергер 25см + EPS 3см + стоманобетон 25см
  1. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C
  2. Masonry from Wienerberger bricks 250mm c δ=250 mm; λ=0.26 W/m°C
  3. EPS- expanded polystyrene c δ=30 mm; λ=0.032 W/m°C
  4. Air layer c δ=20 mm; R=0.14 m² °C/W
  5. Reinforced concrete c δ=250 mm; λ=1.63 W/m°C
  6. Lime plaster-internal c δ=15 mm; λ=0.54 W/m°C

Calculation of actual wall resistance:
Ro = 0,130 + 0,015/0,540 + 0,250/0,260 + 0,030/0,032 + 0,140 + 0,250/1,630 + 0,015/0,540 + 0,130

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 2,508 [m² °C/W] → U = 0,3987 [W/m² °C]

11. Arm. concrete floor with granite tiles + built-in underfloor heating and XPS 5 cm

Арм. бетонова настилка с гранитогрес+вградено подово отопление и XPS 5см
  1. Granite tiles c δ=10 mm; λ=1.05 W/m°C
  2. Glue c δ=10 mm; λ=0.7 W/m°C
  3. Reinforced ceramic screed with floor heating pipes c δ=70 mm; λ=0.93 W/m°C
  4. XPS (extruded polystyrene) c δ=30 mm; λ=0.035 W/m°C
  5. Reinforced concrete pavement c δ=100 mm; λ=1.63 W/m°C
  6. Polyethylene foil c δ=2 mm; λ=0.17 W/m°C
  7. XPS (extruded polystyrene) c δ=50 mm; λ=0.035 W/m°C
  8. Polyethylene foil c δ=2 mm; λ=0.17 W/m°C
  9. Rammed ballast c δ=200 mm; λ=1.16 W/m°C
  10. Compacted terrain c δ=200 mm; λ=1.16 W/m°C

Calculation of actual wall resistance:
Ro = 0,170 + 0,010/1,050 + 0,010/0,700 + 0,070/0,930 + 0,030/0,035 + 0,100/1,630 + 0,002/0,170 + 0,050/0,035 + 0,002/0,170 + 0,200/1,160 + 0,200/1,160

12. Reinforced concrete 16 cm with built-in floor heating + EPS 10 cm

Стоманобетон 16см с вградено подово отопление + EPS 10см
  1. Granite tiles c δ=10 mm; λ=1.05 W/m°C
  2. Reinforced ceramic screed with floor heating pipes c δ=70 mm; λ=0.93 W/m°C
  3. XPS (extruded polystyrene) c δ=30 mm; λ=0.035 W/m°C
  4. Reinforced concrete c δ=160 mm; λ=1.63 W/m°C
  5. EPS- expanded polystyrene c δ=100 mm; λ=0.032 W/m°C
  6. Mineral plaster c δ=15 mm; λ=0.7 W/m°C

Calculation of actual wall resistance:
Ro = 0,130 + 0,010/1,050 + 0,070/0,930 + 0,030/0,035 + 0,160/1,630 + 0,100/0,032 + 0,015/0,700 + 0,040

Calculation of the actual coefficient of heat transfer of the wall:
Ro = 4,3565 [m² °C/W] → U = 0,2295 [W/m² °C]

Come to us if you want:

  • Your building should be well insulated, with effective systems for maintaining the microclimate and minimal operating costs;
  • To calculate the energy consumption indicators of your object and compare it with the scale of energy consumption classes for the different categories of buildings;
  • Energy-saving building, with a high degree of residential comfort with extremely low energy consumption.

Power consumption classes

For residential buildings

For hotels

For commercial buildings

For healthcare buildings

For administrative buildings

For buildings for culture and art

COMMING SOON

OUR TEAM

Chief HVAC Designer

инж. Иванка Георгиева

eng. Ivanka Georgieva

Master's degree - Heat and mass transfer technology, TU Varna

Founding member of KIIP to the HEATING, VENTILATION, AIR CONDITIONING, REFRIGERATION, HEAT AND GAS SUPPLY section since 2003 with full legal capacity

HVAC Designer

eng. Nikolina Boneva

Master's degree - Heat and mass transfer technology, UHT Plovdiv

A member of KIIP with full legal capacity

HVAC Designer

eng. Antoan Ganchev

Master's degree - Heat Engineering

A member of KIIP with full legal capacity

HVAC Designer

eng. Dobromir Takuchev

Master's degree - Heat Engineering

VRF and water installation specialist

HVAC Designer

eng. Mihail Banov

Master's degree - Heat Engineering

Air conditioning and ventilation specialist
HVAC Design

What we can offer?

  • Projects tailored to modern technologies
  • Professional and creative approach
  • Attention to the details
  • Communication and understanding
  • Expert consultation
  • Full responsibility
  • Problem solving
  • On-site tours
  • Reengineering and innovation

How we operate?

  • Meeting with the Investor
  • Discussion of the assignment
  • Offering options
  • Choice of concept
  • Preparation of conceptual project
  • Coordination with individual specialties
  • Finalization of a technical project
HVAC Design
HVAC Design

It is a tradition for our team to fully recharge after handing over a large-scale project. The mountain fills us with smiles and energy for new work successes.

Contact Form

*this field is required

 

We are ready for the next challenge!

Trust our extensive design experience to create the perfect project together.

HVAC Design

CUSTOMERS AND PARTNERS

Product added to compare.